这是最美丽的物理实验。
在量子力学里,双缝实验(double-slit experiment)是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。
绪论
假若光束是由经典粒子组成,将光束照射于一条狭缝,通过狭缝后,冲击于探测屏,则在探射屏应该会观察到对应于狭缝尺寸与形状的图样。可是,假设实际进行这单缝实验,探测屏会显示出衍射图样,光束会被展开,狭缝越狭窄,则展开角度越大。在探测屏会显示出,在中央区域有一块比较明亮的光带,旁边衬托著两块比较暗淡的光带。
类似地,假若光束是由经典粒子组成,将光束照射于两条相互平行的狭缝,则在探射屏应该会观察到两个单缝图样的总和。但实际并不是这样,在探射屏显示出一系列明亮条纹与暗淡条纹相间的图样。19世纪初,托马斯·杨发表了一篇论文,《物理光学的相关实验与计算》(Experiments and Calculations Relative to Physical Optics),详细阐述这些实验结果。由于亮度分布可以用波的相长干涉与相消干涉这两种干涉机制来解释,意味着光是一种振动波,这促使光波动说被广泛接受,也导致17、18世纪的主流理论——光微粒说——渐趋式微。但是后来20世纪初对于光电效应的理论突破演示出,在不同状况,光的物理行为可以解释为光是由粒子组成。这些貌似相互矛盾的发现,使得物理学家必须想办法超越经典力学,更仔细地将光的量子性质纳入考量。
使用双缝实验与各种不同衍生的变版来检试单独粒子的物理行为,这方法已成为经典的思想实验,因为它能够清楚地探讨量子力学的核心谜题,它演示出对于实验结果的理论预测能力所不可避免的基础极限。
例如,稍微改变双缝实验的设计,在狭缝后面装置探测器,专门探测光子通过的是哪一条狭缝,则干涉图样会完全消失,不再能观察到干涉图样;替代显示出的是两个单缝图样的简单总和。这种反直觉而又容易制成的结果,使得物理学者感到非常困惑不解。帢斯拉夫·布鲁克纳(??aslav Brukner)与安东·蔡林格精简地表示如下:
观察者可以决定是否装置探测器于光子的路径。从决定是否探测双缝实验的路径,他可以决定哪种性质成为物理实在。假若他选择不装置探测器,则干涉图样会成为物理实在;假若他选择装置探测器,则路径信息会成为物理实在。然而,更重要地,对于成为物理实在的世界里的任何特定元素,观察者不具有任何影响。具体而言,虽然他能够选择探测路径信息,他并无法改变光子通过的狭缝是左狭缝还是右狭缝,他只能从实验数据得知这结果。类似地,虽然他可以选择观察干涉图样,他并无法操控粒子会冲击到探测屏的哪个位置。两种结果都是完全随机的。
尚未特别加以处理的光束是由很多光子组成的,为了要进一步了解双缝实验的物理行为,物理学者好奇地问,假设光子是一个一个的通过狭缝,那么,会出现什么物理状况?1909年,为了解答这问题,杰弗里·泰勒爵士设计并且完成了一个很精致的双缝实验。这实验将入射光束的强度大大降低,在任何时间间隔内,平均最多只有一个光子被发射出来。经过很久时间,累积许多光子于摄影胶片后,他发现,仍旧会出现类似的干涉图样。很清楚地,这意味着,虽然每次只有一个光子通过狭缝,这光子可以同时通过两条狭缝,自己与自己互相干涉!类似地,电子、中子、原子、甚至分子,都可以表现出这种奇异的量子行为。
1961年,蒂宾根大学的克劳斯·约恩松(Claus J??nsson)创先地用双缝实验来检试电子的物理行为,他发现电子也会发生干涉现象。1974年,皮尔·梅利(Pier Merli) ,在米兰大学的物理实验室里,成功地将电子一粒一粒的发射出来。在探测屏上,他也明确地观察到干涉现象。2002年9月,约恩松的双缝实验,被《Physics World》杂志的读者,选为最美丽的物理实验。
——以上内容引用自百度百科。
作者有话说
显示所有文的作话
第43章 今日学习